Optical excitations in stoichiometric uncapped ZnS nanostructures.

نویسنده

  • Martijn A Zwijnenburg
چکیده

We calculate the optical absorption spectra of low-energy uncapped zinc sulfide nanostructures found by global optimisation (basin-hopping/simulated annealing) using time-dependent density functional theory (TD-DFT) and compare the results with experimental spectra. We predict that for all nanostructures studied the lowest excited state found by TD-DFT corresponds to an exciton with an exciton binding energy that is much larger than that of excitons in bulk zinc sulfide. We further show that for the more symmetrical nanostructures some of the excitons are dark and that the absorption on-sets, the energy of the lowest exciton, for the different nanostructures show no clear evidence of quantum confinement. We propose that this apparent lack of quantum confinement finds its origin in the fact that the lowest exciton is not evenly spread over the whole nanostructure but shows large contributions for specific groups of atoms. Finally, we show that the predicted optical absorption spectra fit with those reported experimentally.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Studies on Structural and Optical Characterization of In-Zn-S Ternary Thin Films Prepared by Spray Pyrolysis

Thin films of indium doped zinc sulfide (ZnS) for different indium (In) concentrations (x=0.0 - 0.8) were deposited onto glass substrate by spray pyrolysis method at 523K temperature. Aqueous solution of zinc acetate, indium chloride and thiorea were used to deposit the In-Zn-S film. The deposited thin films were characterized by Energy dispersive X-ray (EDX), Scanning electron microscopy (SEM)...

متن کامل

Fabrication and Optical Behaviors of Core–Shell ZnS Nanostructures

Novel core-shell nanostructures comprised of cubic sphalerite and hexagonal wurtzite ZnS have been synthesized at 150°C by a simple hydrothermal method. The results of HR-TEM and SAED investigation reveal that the cores of hexagonal wurtzite ZnS (ca. 200 nm in average diameter) are encapsulated by a shell of cubic sphalerite ZnS. The FE-SEM image of the nanomaterials shows a surface tightly pac...

متن کامل

The competition between template growth and catalytic growth of one-dimensional ZnS nanostructures: nanobelts or nanowires.

Template growth and catalytic growth are two typical mechanisms for the solution-chemistry synthesis of one-dimensional (1D) II-VI semiconductor nanomaterials. Here, we systematically demonstrate the competition relationship between them by tuning the synthesis of 1D ZnS nanostructures in different chain-length primary alkyl-amines. The template growth, derived from the coordination effect of a...

متن کامل

Preparation of nanocomposite scintillator of ZnS doped with Ag, Cu and AgCu for alpha particle detection

ZnS nanoparticles (NPs) doped with ‎Ag‎, ‎Cu‎, ‎and AgCu were synthesized using hydrothermal‎ ‎method in water solution‎. ‎The NPS are characterized by X-ray diffraction (XRD)‎, ‎energy-dispersive‎ ‎X-ray spectroscopy scanning (EDX)‎, ‎scanning electron‎ ‎microscopy (SEM) and dynamic light scattering (DLS)‎. ‎The produced NPs have approximately hexagonal structure and a cubic zinc blended struc...

متن کامل

Facile Synthesis and Spectroscopic Studies of SiO2-Core/ZnS-Shell Nanostructure

SiO2/ZnS core/shell nanostructures have been synthesized at room temperature by a simple wet chemical method. The prepared materials are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared spectroscopy (IR), UV–vis spectroscopic and transmission electron microscopy (TEM) studies. X-ray diffraction pattern exhibits peaks correspond to the cubic phase of ZnS. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 3 9  شماره 

صفحات  -

تاریخ انتشار 2011